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PREFACE

The David W. Taylor Lectures were initiated as a living memorial to
our founder, in recognition of his many contributions to the science of
naval architecture and naval hydromechanics. His systematic investiga-
tion of resistance of ship hulls is universally known and used, but of
equal importance was his use of hydrodynamic theory to solve practical
problems. Many of the experimental techniques which he pioneered are
still in use today (for example, the use of a spherical pitot tube for
exploring the structure of a wake field). The system of mathematical
lines developed by Taylor was used to develop many designs for the Navy
long before the computer was invented. And perhaps most important of
all, he established a tradition of applied scientific research at the
"Model Basin" which has been carefully nurtured through the decades, and
which we treasure and protect today.

These lectures were conceived to support and strengthen this
tradition. We will invite eminent scientists in fields closely related
to the Center's work to spend a few weeks with us, to consult with and
advise our working staff, and to give lectures on subjects of current
interest.

It is most fitting that Professor Reinier Timman, mathematician and
philosopher, initiate this series. He has long been a friend and on
several occasions has used the Center for a retreat, to his benefit and
ours. He has inspired and advised our staff and cooperated in our work.
His students at Delft have made leading contributions to the development
of modern naval hydrodynamics. Professor Timman's belief that mathe-
matics can contribute powerfully to our technology is much in the David
Taylor tradition. We are honored that he agreed to give the first in

this David W. Taylor Lecture Series.

W. E. CUMMINS
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FOREWORD

It is great honor to me to be invited to give the first
in the series of David W. Taylor Lectures. My associlations
with the Model Basin date from a long time ago, and a visit
to the United States is for me not a real visit unless I
have the opportunity to taste once more the stimulating
atmosphere which not only gives the Model Basin an out
standing place in hydrodynamical research but also acts as
a breeding ground where nearly all outstanding people in the
field passed an essential period in their lives. So I am
extremely grateful to have been given the opportunity once
more to spend some time at this most interesting place and
to participate in its work. I wish to express my gratitude
to Justin McCarthy who originated the idea of the lectures
and to all other friends who made this period a success.

In particular, I am pleased that Dr. Langan, whom I used to
know as a promising undergraduate student, did a fine job

in editing the lectures.

R. TIMMAN
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ABSTRACT
The lectures present an introduction to modern control
theory. Calculus of variations is used to study the problem
of determining the optimal control for a deterministic sys-
tem without constraints and for one with constraints. The
method of dynamic programming is also used to solve the
unconstrained control problem. Stochastic systems are intro-

duced, and the Kalman-Bucy filter is derived.

INTRODUCTION

Optimal control theory is involved with the great human effort to
control or influence processes of one type or another. The objectives
and criteria for the performance of a physical system may be diffused or
defy tractable analysis in many situations, but the basic concepts on
which to proceed have been established in control theory. One first
considers a system and a process through which the state of the system
is changing in time; in other words, some action or motion of the system
takes place in time. This behavior of the system is described by a set
of time-dependent variables x (t) = (xl, o =B = xn) which are called
the state variables. 1In addition to the state of the system, one also
considers controls by which the process in question can be influenced.

These controls are represented by a set of variables u (t) =

(ur Ce), s » s , u, (t)) which are called the control variables.
At a certain instant in time, say to, the state of the system is
known to be Xy If an analysis of the system is to be performed, a sys-

tem of equations must be specified which predict the state for t > to
and for a given control function u. These equations are called the
dynamic equations for the system; they may take the form of an ordinary

differential equation




or a difference equation

X+l # (tn’ Xn? un)
They might even take the form of an integro-differential-difference
equation or a time delay equation, but they cannot take on a form such

that, the solution at some time t, is dependent on the solution in the

future, t > tl. The dynamic equations must reflect this principle of
nonanticipation. One does not violate this principle by choosing a
control in anticipation of the future and thus influencing the future
state of the system based on estimated future information; in fact, the
choice of such a control is actually based on the history of the state
of the system available at the time of the choice.

If no further specification of system performance is given, every
control function which yielded a physical realizable state of the system
for t > to would be a solution to the control problem. One can have a
meaningful control problem only if there is a desired objective, a goal
to be achieved by the process. Moreover, it is not sufficient merely to
have a goal; there must be a control by which this goal can be achieved.
This control could be the case of no control, f(t, x, u) = £(t, x);
however, it must exist. Since it is not the purpose of these notes to
delve into all the mathematical problems, it will be assumed that there
exists at least one control by which the objective can be achieved. It
will further be assumed that any control function used in the sequel
yields a unique state function x (t) with x (tO) = Xy the state func-
tion is obtained by solving the dynamic equations.

In general, there are a number of controls which could yield the
desired system state. From among this set of possible controls, one
would like to choose the "best" control with respect to some performance
criterion. For example, one would like to choose the control so that
the process is carried out with a minimum cost in fuel, or time, or
money. In the sequel, it is assumed that the performance criterion can
be expressed in terms of a cost function; furthermore, it is assumed

that the cost function is additive with respect to the contribution from

each time interval. An example of such a cost function is




G(ET, T) + JT F(o, x, u) do
%o

where Xp = x(T). This cost function is dependent on the final state of
the system through the function G and on the intermediate states and the
control function through the function F. The additive property of the
control function with respect to the intermediate times is represented
by the integral. By an optimal control is meant that control which
minimizes the cost function; it is this function which is the desired
result of optimal control theory.

Any process that is being controlled is subject to unpredicted
disturbances, and these can make a significant difference in the choice
of a control function. Suppose the dynamic equations of a system is

given by the differential equation

dx
dt

= u + p(t)

where p(t) represents a disturbance. The behavior of the system in
response to the two different controls (ul = - x) and (u2 = - e-t) does
not differ if there is no disturbance (p = 0); however, if a disturbance
is present, the response is significantly different. If x, = 1, the

0
response to the first control is given by

whereas the response to the second control is
X, = e + J. p(o) do
2 0

Such differences could conceivably result in a different choice for an

optimal control.




In analyzing systems and their control, one must find a way to
represent the unpredictable disturbances. Such disturbances cannot be
modeled by analytic functions since the value of an analytic function at
any point is predictable from its value on an arbitrary short interval.
One answer to modeling these disturbances is to describe them as stochastic
processes.l The theory of such processes was developed to model the
fluctuation observed in physical systems. Wiener processes or the
Brownian motion process are of particular interest to the stochastic
control problem; many of the disturbances that affect a control system
can be modeled by processes generated from Wiener processes. A Wiener
process is a stochastic process in which the statistical properties over
the interval (t, t+1) are the same as those over the interval (s, s+T);
moreover, the behavior of the process is independent over time intervals
which do not overlap, and there is no trend in the behavior.

Once the stochastic disturbances have been introduced into the
control theory, the problem is no longer deterministic. The state
variables and control variables are no longer predictable but must be
described by their statistical properties. Kalman and Bucy2 provide a
solution to the stochastic control problem for nonstationary linear
systems. Their solution consists of using an optimal filter to estimate
from the observed system performance the state of the system in terms of
the conditional mean; the estimated state is fed back to the control
signal through linear feedback. The linear feedback is determined by
solving a deterministic control problem; the filter depends on the
disturbances and on the system dynamics, but it is independent of the
cost. Although the nonlinear stochastic control problem or its equiva-
lent, the nonlinear filter problem, has not been solved, some headway
has been made by Bucy and Joseph;3 this lecture considers only the

linear problem.

1Astrom, K. J., "Introduction to Stochastic Control Theory," Academic
Press, Inc., New York (1970).

2Kalman, R. E. and R. S. Bucy, "New Results in Linear Filtering and
Prediction Theory," Journal of Basic Engineering Series D, American
Society of Mechanical Engineers, Vol. 83, pp. 95--108 (1961).

3Bucy, R. S. and P. D. Joseph, "Filtering for Stochastic Processes with
Applications to Guidance," Interscience Publishers, Inc., New York (1968).
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As an example of a control problem, consider a ship moving through
a current of water; the ship is a system undergoing a change in state.
In this example, the state is the position (x, y) of the ship. The
parameters which control the motion of the ship are the power, which
determines the velocity relative to the water, and the steerage angle,
which controls the heading angle 6. In this simplification of the

system, the dynamic equations are:

e
"

V cos 0 + u(x, y)

V sin 0 + v(x, vy)

<o
]

where u and v are the velocity of the current in the x- and y-directions,
respectively. The goal might be to go from point A to point B. If it

is desired to reach B in the shortest possible time, the cost function
would be the accumulated time; if it is desired to reach B with the
minimum expenditure in fuel, the cost function would give the expended
fuel in terms of x, y, V, and 6. A more complicated cost function would
result if it is desired to reach B in the least time with a reasonable
expenditure of fuel. Both the power and steerage angle could be subject
to unpredictable perturbations; there could also be a stochastic pertur-
bation of the current.

This lecture on control theory first treats a deterministic optimal
control problem with no constraints on the controls. It is first solved
by transforming the problem into a boundary-value problem for an ordin-
ary differential equation, the so called indirect approach; it is then
solved by the direct method developed by Bellman, the method of dynamic
programming.4 The big contribution of modern control theory to the de-
terministic control problem has been the extensions to controls with
constraints, and a discussion of constrained controls constitutes an-
other major topic of the lecture. Still another important area is the

development of the theory of stochastic processes necessary in the

4Bellman, R. E. and S. E. Dreyfus, "Applied Dynamic Programming,"
Princeton University Press, Princeton, N.J. (1962).




treatment of stochastic controls. Finally, the theory of Kalman-Bucy
filters is given and their solution to the stochastic control problem is

presented for linear systems.

THE OPTIMAL CONTROL PROBLEM
In these lectures the simplest optimal control problem considered
is that of a state variable x(t) and a control variable u(t) defined on
an interval 0<t<T. The process being controlled is described by the

dynamic equations
k(t) = f£(t, x, u) (1.1)
with

x(0) = x (1.2)

0
The vector f is twice continuously differentiable with respect to x and
Lipschitz continuous with respect to u; this latter condition means
simply that there is a constant L such that for every pair of control

vectors u and v
|£¢e, x, w) - £(¢, x, W] < L[y - y] (1.3)

For each control vector u, these conditions imply that the state
vector x, which is obtained from solving (1.1) and which also satisfies
the initial condition (1.2), exists and is unique. Moreover, from among
the set of control vectors, it is assumed that there is a unique control

u which minimizes the cost function C The cost function is defined by

T
the following:

T
Crlul = G(xp, T) + j F(o, x, u) do (1.4)
0




The functions F is twice continuously differentiable with respect to x
and Lipschitz continuous with respect to u; G represents the cost at the

terminal point x(T) = it is twice continuously differentiable with

Xps
respect to XT'
Suppose that v is an optimal control vector, and consider a slight

deviation du of this control vector. If
u(t) = v + du
u(t) is also a control vector, as can be seen from an application of the

theory of ordinary differential equations. If z is the state vector

associated with the control v, the new control u yields a new state

vector x given by
x(t) = z + 6x

where &5 is an unknown. Moreover, since v minimizes the cost function,

the new cost function is greater;

T
I F(0, x, u) do + G(x;,T)
0

T
> J F(o, z, v) do + G(ET’T) (1.5)
0

Since the old state vector satisfies

Z=1f(, 2z, v)

and the new one satisfies

[%e
"

f(e, x, v




then

X+ 0k =% =f(t, z+ 6x, v+ 6u)

Now by assumption f is twice continuously differentiable with respect to

X; hence

O
e
1]

£(t, z + 8x, v + 8u) - f(t, 2z, ¥v)

£ 8x+ £(t, z, v+ 6w) - £(t, z, v) + 0(|8x|%) (1.6)

It is not necessary that Su be uniformly small; indeed, in problems
involving bang-bang controls, this is not at all true. However, there
can be deviations Su of order one only if their duration is short. It

can be proved that if du satisfies the condition
T
f |8u(o) | do < € 1.7
0

then the deviations 6x(t) are also of order €. Since by assumption, f

is Lipschitz continuous with respect to u,
|£Ct, z, w) - £(¢, 2, ¥)| < L|lu - v| = 0(8u)

Moreover, it follows from Equation (l1.6) that to the same order of

approximation

8x =

- £x 6§+ £(t’ 2, E) = f(ta ia 1) (1-8)

or in abbreviated form

Sk = £ Sx + £(w) - £(v) (1.9)




This equation is a linear differential equation for 8x, and there
are standard ways for solving linear differential equations.5 One first

considers the linear homogeneous equation
¥ = Ay (1.10)
where in our case y represents the vector 6x and A the matrix ix' Let

(¢, ), « . o, & . (t, T))

j -
yo(t) = (¢ I nj

be the solution of Equation (1.10) with ¢ij(T, T) = Gij’ the Kronecker
delta; moreover, let ¢(t, 1) be the matrix whose column vectors are the

vectors X;’ d(t, 1) = ®i (t, T). The matrix ®(t, 1) is called the

i

transport matrix or fundamental matrix for the differential Equation

(1.10). From (1.10) it follows that as a function of t

3
ot

(£, T) = AD(t, T) (e 11)
and by its definition

d(t, 1) = 1 (1.12)

where I is the unit matrix. The solution y(t) is given in terms of its

value at t = T by

y(t) = o(t, 1) y(1) (1.13)

5Coddington, E. A. and N. Levinson, '"Theory of Ordinary Differential
Equations," McGraw-Hill Book Company, Inc., New York (1955).




Hence

I y(e) =y(t) = o(t, 1) y(1)
= ¢(t, 1) &(7, t) y(t)
or if y # O,
I = o, 1) (1, t) (1.14)

Differentiating with respect to t yields

= % (t, T) o(t, t) + &(t, 1) —g—g d(t, t)

(=)
!

A d(t, T) O(1, t) + (e, T) g—t o(t, t)

ACE) + 0(t, T) o= (1, t)
It can be shown that ®(t, T) has an inverse and that this inverse is

¢(t, t); consequently

%E 8(t, t) = - o L(e, T) A(t) = - (T, t) A(L)

that is, $(t, T) as a function of T satisfies

%? d(t, T) = - &(t, T) A(T) (1.15)

Although (1.15) will be used subsequently, of immediate interest is the

solution to the inhomogeneous linear equation

y=Ay+ g() (1.16)

10




with y(1) = 0; the solution is given by

t

y(t) = J o(t, o) g(o) do (1.17)
F

which can be verified by substitution into (1.16). For the control
problem, (1.17) has two consequences: it can be used in conjunction
with (1.6) to obtain an estimate for the order of magnitude of 65 and
it can be used to solve (1.9).

In the first case,

t %

|6x| < f |o(e, o)|| £(u) - £(v)| do + J’ 0(6x%) do
0 0

t t
<M J’ | £(u) - £(v)|do + f O((sz) do
0 0

where M is a bound for ¢. From (1.3)

t

t
|8x| < LM .[ |8u| do + J 0(5x2) do
0 0

| A

t

LMe + J’ O(ze) do
0

A

By iteration
t
|6x| < LMe + J 0(e?) do = 0(e)
0

The second case is of more interest, of course, for it gives an

approximation of éx good to the second order in €, namely,
t

0x = J o(t, 0) [£(w) - f£(v)] do (1.18)
0

11




where ¢ is defined by

% (£, T) = £ (£) 8(t, T) (1.19)

Now consider the difference in the values of the cost function; by

(1.5)
t

J F(o, x, u) - F(o, 2z, v) do + G(XT’ T) - G(ZT: T) >0
0

Hence, from the assumptions on F and G,
.-

J [F 8x + F(u) - F(v)] do + G &x(T) > 0
J ® - .
By (1.18),

T T
J [F (1) .[ o(1, 0) (£(u(0)) - £(v(0)))do + F(u(t)) - F(v(1))] dt
0 0

T

+6, f (T, 0) (£(u(0)) - £(v(0))) do > 0 (1.20)
0

If the order of integration in the double integral is changed,

T
F (1) f o(t, 0) [£(u(®) - £(v(0)) dodt
0

= J‘ _[ F ()e(t, 0) dt [£(u(0)) - £(v(0))] do (1.21)
0 T

The vector function E? is defined by
T

RT(t) = - J FX(T) d(t, t) dt - Gx(T) o(T, t) (1.22)
t

Recall that one of the properties of ¢ was (1.15)

-g% (t, t) = - ¢(t, t) ﬁx(t)

12




Then

T
B = F (1) d(t, t) - Jt F_(T) —g-g o(t, t) d1 = G (T) %? (T, t)
T
= F (1) + ! F (1) o(1, £) £ (t) dT + G_(D)O(T, t) £ (t)
T
= P_{£) - —[fc Fx('c) ¢(t, t) dt - G_(T) &(T, t)] £ (t)
Bl =F -p £ (1.23)

with B?(T) = Gx(T)' In terms of pT, (1.20) becomes

T
f [- P (0) (E(w) - £()) + F(w) - F(v)] do > 0
0
or
T
f [- F(v) +p £W)] - [- F(w +p £(w)] do >0 (1.24)

0

Since du is an arbitrary deviation satisfying only (1.7), it can be
chosen such that u = v everywhere except on some arbitrary interval; as

a consequence, the inequality in (1.24) must hold for the integrand:

- F(v) +pl £(v) > - F(u) + p’ £(u)
Define
H(t, u) = - F(u) + p_T £f(u) (1.25)

Then H satisfies
H(t, v) > H(t, u) (1.26)

13




for v, an optimal control. This is the Pontryagin maximal principle
which states that for given values of E? and x at time t, the optimal
control v(t) is the control function for which the Hamiltonian H(t, u)

is a maximum.

If the control functions are sufficiently smooth, the optimal

control is that control for which

oxEs_ 7 wp'F (1.27)
u u

It is assumed that f is differentiable with respect to u; prior to this
equation, f need only be Lipschitz continuous with respect to u. This
equation is a system of m equations which could be solved for the

m control functions (ul,...,um) in terms of the state variables
(xl,...,xn) and the new variables (p{,...,p:). Consequently, the
optimal control problem has been reduced to a two-point, boundary-value

problem for an ordinary differential equation:

x = f(t, x, w

po=F -p £
T
- - +
0 Fu p £
or
. oH
X = =
op"
oH
D = — — )
P 9x 148
oH
5 du

14




where

x(0) = X

p(T) = Gx(T) (1.29)

There are just enough conditions to determine x, B?, and u.

The function H contains the variables x, 2?, u, and of course t.
Using (1.26) to eliminate u, (1.28) can be expressed in terms of the set
of dual variables x and p' = E?’ where the prime denotes transpose of
the vector; the resulting system is the familiar canonical form of

classical mechanics.

. _ OH

z p

..o

P= -5 (1.30)

The boundary conditions are stated in terms of Xg> X and T; for

instance, both X and T might be fixed, or either one miggt vary while
the other is fixed. No boundary conditions are specified directly in
terms of p; the boundary conditions on p are obtained indirectly by
substitution into (1.29). Equation (1.29) does, however, contain a
sufficient set of conditions to pose a two-point, boundary-value problem
for (1.30).

Another form that the boundary condition at t = T might assume is

for X7 and T to satisfy an end condition of the form
ﬁﬁﬁT, T) =0 (1.31)
where M is a twice continuously differentiable vector function of both

its arguments. In this case the method of Lagrange multipliers will be

used to transform the optimal control problem into a corresponding

13




two-point, boundary-value problem. The vector q is introduced here as a
Lagrange variable. Now the problem of minimizing the cost function (14)

is replaced by the problem of finding the unconstrained minimum of

T
Cq(g) - J F(o, x, u) + q"(x - f£(0, %, u) do
0

+ u"M(

|»
—
~
+
(o]
~
o

T) (1.32)

The boundary condition (1.31) has been inserted into the cost function
by means of the Lagrange multiplier u. Suppose v(t) is the control
which minimizes Cq. For a variation Su to the control v, let x(t)
denote the new state variable, and let t = T+AT be the time at the new
terminal point. The main difference from the previous argument in this
section is that the terminal time is T+AT rather than AT. The new cost
is given by

T+AT
Cq(g) = . F(o, z + 6x, v+ Su) +q'(2 + 6% - f(0, z + 6x, v + Su) do

+ G(x(T + AT), T + AT) + u'M(x(T + AT), T + AT)

Hence the increase in cost Cq(g) - Cq(l) is given as:

T

YRe 1 _al
_([ [del(. + Fudg_ +q'dx - q fxdi q quE] do

Cq(g) = Cq(l)
+ GxAgST + GTAT + ' (EXAET + l‘_’lTAT)

T+AT
+ f F(o, x, w) +3'% - 4'f(0, x, u) do

T
where x = z + 0x
T gex T
A S_' (-it_dt =q_'(T) 6x(T) - fo q' éx do
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Hencg T

0 < 0 {r, - q" - q'€] 8x+ [F - q'f ] Su} do

+ q'(T)6x(T) + GXAET + GTAT +-E'(§xA§T f yTAT)

T+AT
+ f F(o, x, uw) + g'%x - q'£(0, x, u) - F(T, X, Yr)
T

- 9'%(T) + q"£(T, x;, uy) do

+ [E(T, X ET) +-ﬂ'ET + q'8%x(T) - q'£(T, b5 ET)] AT (1.33)
The integral from T to TH+AT is a second order contribution which goes to
zero faster than the other terms as AT > O.
In order to determine AET’ consider the solutions of the differ-
ential Equation (1.1), which have the initial value X4 These solutions

satisfy the integral equation

t
x(t) = x, + J f(o, x, u) do
9 0
Then AT
bxp = (x(T) - 2(T)) + f f(o, x, u) do
T

§x(T) + £ AT + 0(e?)

where the geometry of the proof is illustrated in Figure 1.

/
s
7
L \eAT
Sx AxT

_

|
"
|
| I
| |
| |
L |
T T+AT
Figure 1 -- Geometry of the Proof
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To within second order

6x(T) = A§T - f AT (1.34)

Within this order of approximation, (1.33) reduces to the following:
T

0< £ [F_-3§' -aq'f] 8x+ [F -g'f ] 6udo

+la' (M + 6 + WM ] b x,

If g is now determined so that the coefficient of 6x vanishes,

This is the same differential Equation (1.23) that p satisfied; our
Lagrange multiplier can then be identified with p

q=p (1.35)
Moreover, since the relationship must hold independent of &u,

F -p'£ =0 (1.36)

Since there are no longer restrictions on Ax and AT,

L] =
p'(T) + E-Ex + GX 0
(1.87)
F+ G, + Eng -p'f=0

Introducing the Hamiltonian (1.25) yields
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Ixe
"
|

op
. oH
P=-3 (1.28)
_ o
g = du

The initial condition x(0) = %5 together with the terminal conditions

E(KT’ T) - 0
R'(T) = - (WM +G) (1.38)
H(T, u(T)) = G + EjET

provides a sufficient number of conditions to determine x, p, u, and T.
The last two equations in the system (1.38) are obtained from (1.37).

The problems of optimal control theory generally reduce to a two-
point, boundary-value problem for the system of ordinary differential
equations (1.30). Bailey, Shampine, and Waltman6 discuss methods for
solving such two-point, boundary-value problems. These problems are
presently solved either by the shooting method or by solving a sequence
of simpler boundary value problems whose solutions converge to a solu-
tion of the given problem. In any case, very few of these problems can
be solved without the use of electronic computers either digital or
hybrid.

The shooting method is the easier, when it works. It consists of
supplementing the conditions at one end with a sufficient number of

assumed conditions to yield an initial value problem. The initial value

6Bailey, P. B., et al., "Nonlinear Two-Point, Boundary-Value Problems,"
Academic Press, Inc., New York (1968).
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problem is solved; the solution is substituted into the boundary con-
ditions at the other end. If these conditions are satisfied, the solu-
tion to the initial value problem is the desired solution to the two-
point, boundary-value problem; otherwise, a new set of assumptions is
made based on the discrepancy between the actual boundary values and the
calculated values. Hopefully, as one continues this iteration process,
the solutions to the initial value problem converge to a solution of the
two-point, boundary-value problem. The shooting method may not con-
verge, or it can be unstable, that is, a small variation in the initial
conditions results in a large variation in the solution. If the initial
problem is unstable, a small error, such as roundoff on a computer,
could cause subsequently computed values at another point to be meaningless.
Before proceeding to the direct method for solving the optimal
control problem, take a second look at the Hamiltonian H and the func-
tions 2?. Suppose that the terminal cost G is identically zero; the

cost function is then

T

C(uw) = J F(o, x, u) do
0

Further, assume that every point in an open neighborhood N of an optimal
trajectory z(t) can be joined to the initial point (O, 50) by a trajec-

tory x(t) resulting from an optimal control. This assumption makes the

minimal cost J a function of the terminal point (T, ET) in N.
T
J(ET, T) = Min f F(o, x, u) do (1.39)
0

It is assumed that J is twice continuously differentiable. Then,

J(xp + Axp, THAT) = J(xp, T) + J Ax, + JAT  (1.40)
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By the definition of J, there is a control u + Su together with a
trajectory x + 6x such that

T

JQ(-T + 0x,, T+AT) = j F(o, x + 8x, u + Su) do
0 (1.41)
where u is the control such that
T
J(ET’ T) = f F(o, x, u) do (1.42)
0
From (1.41) and (1.42)
J(ET + AET, T+AT) - J(ET, T)
T
= j F(o, x + 6x, u + du) - F(o, x, u) do
0
T+AT
+ j F(o, x + 8x, u + Su) do
T
B
= .f (F 6x + F Su) dt + FAT
0 X = u—
Now from (1.23), the equation for p is
- ]
Pa ™ Rt P
Hence
J(ET + AﬁT, T+AT) - J(xT, T)
T
= £ (' + Rﬂgx) dx + Fuégj do + FAT
T
= p"(T) &x(T) + J E'(£x§§ - §x) + Fudgvdo + FAT

0
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From (1.9)

Hence

J(xp + By THAT) - J(xp, T) = p'(T) (8%, - £AT)

T
+ J; (F, -p'f) Su do + FAT

where use has been made of (1.34). But by (1.27), Fu Efﬁu = 0; so,

J(xT + AxT, T+AT) - J(xT, T) = R'AET + (F - p'(T)f) AT

p'(T) bxy - HAT
= Jx AET + JTAT
where the last equality results from (1.40). This gives
- (1.43)
and

J,.=-H (1.44)

In the space of variables (xT, T), the vector p' is the gradient of
the function J; it is normal to the surfaces of constant J; H is the
Hamiltonian of the function J. This sheds new light on the maximal
principle. Along an optimal trajectory, the change in cost J over a

given time step AT is a minimum, that is, H is a maximum.
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Figure 2 -- Constant Cost Fronts
These arguments hold only if the terminal cost is zero; G = 0.

RELATION TO DYNAMIC PROGRAMMING
The partial differential equations (1.43) and (1l.44) can be ob-

tained by the method of dynamic programming. This method is based on
the Bellman principle of optimality.7 According to the Bellman prin-
ciple, an optimal control policy has the property that, regardless of
the initial state or initial decision, the remaining decisions must
constitute an optimal control policy with regard to the state which
results from the first decision.

In terms of the cost function

T
C(u) = _[ F(o, x, u) do
0

the Bellman principle takes the form.
The cost C(u) is a minimum along a curve x defined on [0, T] if it

is a minimum along each later part of the curve, that is, if

7Dreyfus, S. E., "Dynamic Programming and the Calculus of Variation,"
Academic Press, Inc., New York (1965).
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T

f F(o, x, u) do
t

is a minimum along the curve x on the interval [t, T] for all te[0, T].

The integral is dependent on the end point (t, x(t)). If one

defines
T
J(x, t) = min J F(g, x, u) do (2.1)
u ot
for all admisible controls u, then
T
J(x, t) = min {F(t, x, u) 8t} + min F do
u u  t#dt

or

J(x, t) = min {F(t, x, u) 6t + J(x + 6x, t + St)} (2.2)
u

This equation forms the basis of the direct methods for solving control
problems, described by Dreyfus.7 Larson8 extended the direct methods to
constrained problems.

If it is assumed that J has partial derivatives, the differential
equations (1.43) and (1.44) can be obtained from (2.2). Hence, the
boundary value problem for the optimal control is obtained. If the
partial derivatives of J exist, the right-hand side of (2.2) can be

expanded in a Taylor series:

J(x, t) = min {F8t + J(x, t) + Jx(x, t) &x + Jt(x, t) ot}
u

(2.3)

8Larson, R. E., "State Increment Dynamic Programming,' American
Elsevier Publishing Company, Inc., New York (1968).

24




Hence

O=min {F+J f +J } 6t
" = [

Since 8t > 0,

0= min {F + ng + Jt} (2.4)

In order to find the minimum of the term in brackets, it is differ-
entiated with respect to u and the result is set equal to zero. This is
a necessary, but not sufficient condition; however, if one assumes a

minimum, it serves the purpose.

F +J fu=20 (2.5)
u x—=
By (2.4),
F + ng + Jt =0 (2.6)
Hence
H =20
u
(1.43)
Jo=-H=- (F+Jf)
From (1.25)
_ T
Jx = p (1.42)
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There is a difference between the definition of H here and its
definition in the previous section. This is only an apparent difference
in the sign of F, which occurs because the lower limit of the integral
is used in the definition of J here rather than the upper limit as used
earlier. Otherwise there is complete agreement with the results of the

indirect method.

CONSTRAINTS ON THE CONTROL AND STATE VARIABLES
In most applications, the control or the state variables cannot be
chosen arbitrarily but are subject to constraints. In the problem of a
ship moving in a current, ship speed is limited by the maximum power
available. The constraints can generally be expressed in terms of

inequalities of the form

$(x, w) <0 (3.1)

where the vector inequality simply means that the components satisfy the
inequality. The number of components in the vector ¢ is the number of
constraints on the system. The analysis does not depend on whether both
x and u occur implicitly in the inequality; one can have constraints on
the controls and not on the state of the system or vice versa without
affecting the analysis.

In this presentation, the variables in the optimal control problem
with constraints are the state variable x(t) and the control variable

u(t) defined on an interval 0 < t < T. The process being controlled is

described by the dynamic equation (1.1):
x(t) = £(t, x, u)

with initial condition x = X3 the state and control variables are
constrained by the inequality (3.1). For simplicity, the terminal cost

is taken as zero, G = 0, and the cost function is given by the equation:

I

Crlw) = J F(o, x, u) do (3.2)
0
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The vector f and the cost function F are twice continuously differentiable
with respect to x and continuously differentiable with respect to u.
The Lagrange multipliers will be used here to reduce this problem
to a two-point, boundary-value problem. As in (1.32), the differ-
ential equation is introduced into the cost function by means of a

Lagrange multiplier p.

g

Cp(g) = J F(o, x, u) + p'(x - f(o, x, uw)) do
0

which yields the variational equation

T
J [Fxéx + Fuég + p' &x - Rjgxsﬁ -p'f du] do

0
‘Y
= p'(Déx(1) + £ ((F, - p' - p'E)
+ (Fu - Rfﬁu) Su do > 0 (3.3)

The differential in the cost is greater than or equal to zero since
it is assumed that the variation 63 is around an optimal control, a
control which minimizes the cost.

Because of the constraint (3.1), the vector Su is not free.
For instance, suppose that for t between t. and t

1 2
due to the optimal control Xﬁt) is along the boundary of the allow-

the trajectory z(t)

able region; see Figure 3. One cannot freely choose the variation du

in the control vector for t. <t <t

1 and still expect to remain in the

2
allowable region R.

For the optimal trajectory z and control v, there are at most a
finite number of intervals t, <t <t

k k
any of the equations in (3.1).* On such an interval, the conditions

+ 1 such that equality holds for

(3.1) can be split into two sets

*The proof of the statement is topological and beyond the scope of
these notes.
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______ x(t) = z + &x
Figure 3 -- Constrained Variables
$,(z, v) =0
and
¢2(g, v) <0 (3.4)

where ¢ = (Ql"QZ)'

Consider a new vector Y defined by

o(x, u) + Y(x, w) =0

The vector | is called a defect vector. Along the optimal trajectory,
the vector Y can also be split into two component vectors, yl and gz,
which correspond to the component vectors of ¢. The component vectors

of y also change from interval to interval. Along a given interval

[t Erenn ]
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(3.5)

Since Ql(g, v) is zero on this interval, either z, v, or both are
on the boundary of their allowable range. From previous arguments, it
is known that one cannot freely choose Su. Only those values of Su are

allowed which satisfy
9,(z +6x, v +6u) <0
or by (3.4)

9,z + 0%, v + Su) - ¢, (2, v) <0

On the other hand, for a neighboring trajectory to z

¢(z+6x, v+du +yY+6p=0

on [tk, tk+l]' Since ¢ = - Y
¢(z + 8x, v + 6u) - ¢(z, v) + Y =0 (3.6)
In order that the above inequality and (3.6) hold,
dyl >0 (3.7)
Moreover, provided the variations are sufficiently small, GQQ is free.

If ¢ is twice continuously differentiable, then it follows from
(3.6) that

9, Sx + 9, Su+ &Y =0 (3.8)

29




Set Gu = (531, 652) and consider the first N, equations in (3.8),

o1
N’bl = dim (Ql).

glx hy » $lul 621 L mlu2 6}-1-2 * G-lkl ~9

If the square matrix ¢1u is not singular, its inverse Yy exists, and
1

duy = -y -q)-luz Suy = ¥ &5, 6x - ¥ &Yy

The vectors 652 and 8x are free; the vector 6&1 satisfies (3.7). If

the matrix Qlu is singular, the first N¢ constraints were de-
1 1

pendent; eliminate the dependent constraints and start again.
The contribution to the cost differential (3.3) from the

interval t, <t <t

K is the following integral:

k+1

=
[]

J»“k+1
k A {[Fx - 13-' - P-'£'>< - FulY le - P-'-gullY le] 65
k

+[(F -p'f -F =-p'f )Y, 16u
u, ~u, uy Uy lu2 2

= 1]
- (Ful E_gul) Y syl} do

Define the vector &1 by

) Y (3.10)

Then

Pt
[}

thﬂ

oy _ ' 1
k - {[Fx - R R-fx +-Akélx] éx
k

+ [(Fuz _ R'-guz) +51 gluz] 5u2 + 11611} do
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The vector p can be determined so that the coefficient of 6x vanishes:

pr=F -p' £+ Mo (3.11)

Since 622 is free, the usual argument that 622 is zero everywhere except

on a small interval yields

' '
Fz—R E“erAl

Qluz =0 (3.12)

Now 8u can be chosen so that Su = 0 for t < t, and for t < t.

k Kkl —
In this case, the only contribution to the cost difference (3.3) is that

due to Ik; hence

J*tk+l

- 1]

°f g ® A ¥y 0
Ex

By (3.7), 8y

Iv

1 03 180

A, >0 (3.13)

H=-F+p' f-A"¢ (3.14)

where A is defined by

>
\
o
He
h
h=a
.
n
o
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The differential system (1.28) also holds for this H, that is,

. _ OH

X p
- _ oH

R = =B (1.28)
_ o

s du

One example of a constrained control problem is that of a forced

harmonic oscillator in which the magnitude of the force is limited.

In

this problem, the force is the control and the process is one of chang-

ing the velocity and displacement of the harmonic oscillator. It be-

comes an optimal control problem if one is interested in finding the

force or control which reduces the oscillator from a given velocity and

displacement to zero velocity and displacement in minimum time.
The equation of motion for the forced harmonic oscillator with a

limited force is simply

where |F| <M, a given constant. Set x = cz/M, T = wt, and u = F/M
where w = v¢/M. In terms of these nondimensional variables, the non-
dimensional form of the equation of motion is

X+ x=u (3.15)

where the control function satisfies the inequality |u| < 1. This

constraint can also be written in the form
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() = (w=-1)<0
(3.16)

¢2(u) - (u+1) <0
The optimal control problem can be formulated in the phase plane.
If (x, y) are the phase plane coordinates, the equation of motion (3.15)

takes the form
3:172)

Starting the oscillator at a given displacement with a given velocity is
equivalent to assigning a given point (x, y) = (a, b) in the phase plane
as an initial condition for (3.17). The rest state of the oscillator is
represented in the phase plane by the point (0, 0), the point of zero
displacement and velocity. Hence, the optimal time control problem is
one of finding a control u which minimizes the time between states

(a, b) and (0, 0). In this problem, the cost is given by

T
Crlu) = T = f dt (3.18)

The cost function F(t, x, u) = 1.
Set p = (p, q). Then the Hamiltonian defined by (3.14) is

H=-1+py +q(u-x)-A(u=-1) (u+1) (3.19)

and, moreover, (1.28) takes the form
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x=-$-=y

- oH _
y = 34 Xx +u

). G
P P

- _oH_ _
q Jy P

oH .

0=3.=a-Au-1)-Au+1) (3.20)

Suppose u is an optimal control which reduces the oscillator from
the state (a, b) to the state (0, 0) in the minimal time T, and suppose

|u| < 1 for the interval T, < T < T Suppose ¢ # O on T, < T < T

By (3.20), q - 2Au = 0; hegce, A# é on (Tl, TZ)' A consiquence o%
A # 0 is that ¢ = 0; hence, if q # 0, it follows that |u(t)‘ =1 on (Tl’ T2).
In other words, one needs to look only for the optimal control among
those controls for which |u(t)[ =1,

Now [ul = 1 implies u = + 1; hence, the solution of (3.20) is

given as:

x4+ 1=Asin (1t + @)
y = A cos (T + a)
p = B sin (1T + uo)
q =Bcos (1+ ao)
q=22XAu (3.21)
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Since A > 0, it follows from the last of these equations that the sign
of q is the same as the sign of u. Hence, if q changes from positive to
negative, the optimal control must switch from +1 to -1. It switches
from -1 to +1 if q changes from negative to positive.

In a neighborhood of the origin, the optimal trajectory satisfies

(x + l)2 + y2 =1

Hence, its final segment is either on the circle of radius 1 about
(-1, 0), or it is on the circle of radius 1 about (1, 0); see Figure 4.
Suppose for the sake of argument that there is an € > 0 such that
u(t) = -1 for T - ¢ <1 < T. The last segment of the optimal trajector
is on the semicircle {(x + 1)2 + y2 =1, 0 :_y}..

Between (0, 0) and (-2, 0), the parameter T would change along this
semicircle by the amount m; hence, the sign of q must change somewhere

on this semicircle. At the point S, where q changes sign, the sign of u

1
must also change, and u switches from -1 to 1. The optimal path continues

backward on the circle of radius r, around (1, 0) until either (a, b) is

reached or q changes sign. But q does not change sign until the point

S2 is reached since the time between Sl and 82 is m. At S2‘ the control
would switch to -1 and the optimal trajectory would continue back on the
circle of radius r, around (-1, 0). This process is continued until the
point (a, b) is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>